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FAULT ATTACKS & FAULT MODELS

Fault Attacks have long proven their devastating effects on unprotected crypto
implementations

To simulate the effect of a fault as well as to design and assess countermeasures, we
use fault models such as stuck-at-0, stuck-at-1, bitflip or random-byte

Through these fault models, we implicitly assume that a fault will only alter a bit, a
byte or at most a word of a value that is being manipulated

This can be somehow limiting and possibly lead to ignore some real-world effects
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FAULT ATTACKS + LATTICE REDUCTION = FA-LLL

At CT-RSA 2022, Cao et al. proposed several attacks using the following strategy:
Fault several executions, assuming bounded random additive errors :

x̃i = xi + εi, εi < B

Use the faulty outputs to exhibit a Hidden Number Problem instance and solve it
thanks to lattice reduction algorithms to recover the secret value

They applied it to several deterministic elliptic curve signature schemes

Interestingly, this allows using larger, unknown (random, or not) faults
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HIDDEN NUMBER PROBLEM AND LATTICE REDUCTION

Hidden Number Problem
Given the lMSBs (yi) of randommultiples (ti) of a secret αmodulo a prime p, find α

0 ≤ ti · α mod p− yi ≤ p/2l

It is possible to solve this HNP by searching for short vectors in the lattice spawn by
the following matrix

M =



p 0 . . . 0 0

0
. . .

...
...

... p 0
...

t1 . . . tδ 2−l 0
−y1 . . . −yδ 0 1
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HIDDEN NUMBER PROBLEM AND LATTICE REDUCTION

Indeed from the coordinate vector x = (h1, . . . ,hδ, α,1) and recalling

M =



p 0 . . . 0 0

0
. . .

...
...

... p 0
...

t1 . . . tδ 2−l 0
−y1 . . . −yδ 0 1


We have that v = xM = (h1p+ t1α− y1, . . . ,hδn+ tδα− yδ,2−lα,1) is a vector of L(M)
and we can expect it to be short since 0 ≤ ti · α mod p− yi ≤ p/2l

Lattice reduction algorithms such as LLL or BKZ are then likely to exhibit v and thus,
reveal α
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LATTICE-BASED FAULT ATTACK
AGAINST RSA ENCRYPTION
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RSA ENCRYPTION

Let (n = pq,e) be an RSA public key andm a secret message

RSA encryption ofm is done as follows:

c = me mod n

m can then only be recovered with the knowledge of the private key d = e−1 mod φ(n)

m = cd mod n

The only known attack against the public exponentiation is a perturbation of the
modulus n (Berzati et al. 2008)

We then assume a simple left-to-right Square & Multiply exponentiation
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MODULAR EXPONENTIATION

Algorithm 1: L2R Square & Multiply
Inputs:m, e = (ek−1, . . . ,e0)2, n
Result:me mod n
A← 1 mod n
for i = k− 1 to 0 do

A← A2 mod n
if (ei = 1) then

A← A ·m mod n
end

end
return A
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FAULT ATTACK ON RSA ENCRYPTION

For the last iteration of the loop, e0 = 1 and so :

A← A ·m = me−1 ·m mod n

We consider in the following a small additive fault on the second operand of the
multiplication:

Ã← A · m̃ = me−1 · (m+ εi) mod n

As a result, we get a faulty ciphertext

c̃i = me−1 · (m+ εi) mod n
= c+me−1 · εi mod n

We can then build several equations of the form

εi = (c̃i − c)(me−1)−1 mod n
= (c̃i − c)m1−e mod n
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FROM FAULTY OUTPUTS TO AN HNP INSTANCE

Hidden Number Problem
These equations can be seen as an instance of the HNP:

0 ≤ εi = α · ti mod n ≤ B,

with
ti = c̃i − c mod n
α = m1−e mod n, the hidden number.

We can now remark that
c · α = me ·m1−e = m mod n

That is to say, one can decrypt c by multiplying it by α
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SIMULATIONS
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Figure: FA-LLL on RSA encryption success rate depending on error size and available number of faulty
ciphertexts.
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VARIATIONS

Note thatme−1 can be recovered directly by skipping the last multiplication of the
exponentiation loop

The attack can also be adapted by faulting any operand of the square or multiply
operation, or even by skipping entirely the last loop iteration

((m
e−1
2 )2)−1 · c = (me−1)−1 · c = m1−e ·me = m mod n

We illustrate here the case of the classic left-to-right S&M algorithm, but parsing the
exponent the other way around or even using windowing does not prevent the attack

FA-LLLing for RSA ⟩ Lattice-based Fault Attack against RSA Encryption 14



COUNTERMEASURES & LIMITATIONS

Obviously, traditional RSA fault countermeasures should be effective at detecting our
attack

We note that, in the context of encryption, repeating the operation is an efficient
approach since the public exponent is usually small

Yet, another factor can make the attack fail:
using a correct padding scheme
PKCS #1 v2.2 mandates the introduction of random values in the message
encoding when using the public exponent
the assumption that the samemessage is encrypted is not met anymore

Finally, another limitation is that lattice attacks are not robust to errors. So if the fault
model is not correct, the attack will fail
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CONCLUSION
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CONCLUSION

FA on RSA encryption
Can be obtained with a standard FA or with the help of lattice reduction
Extends the known attack surface for modular exponentiation with a public key
Seems to withstand usual SCA countermeasures

FA on RSA signature
Extends the known attack surface for CRT-based signature generation
Prevented by SCA countermeasures on the recombination

In both case using a padding scheme introducing some randommakes the attack fail

FA-LLL can be a promising tool
To find new attack paths
To exploit faulty outputs with a quite large error
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